
Contribution Workflow 

Overview 
In comparison to the normal ‘ticket’ flow contributors need to be able to walk their own new 
feature tickets through the process as well as contributed bug fixes. It may look bad to start, but 
once you get a basic understanding of Git, Github, and Lighthouse it is super easy. 

Note: 

This document is not a ‘how-to’ for setting your work environment. There are numerous step-by-
step guides available for that already. 

Ticket state flow: 

new → open → needs_ack → acked → proposed → candidate → resolved 

The first two don’t have as much meaning for new-feature tickets as for issues. 

• [ new ] – This state is useful if you want some input on your idea before you even start 
coding. 

• [ open ] – If you are working on your feature but don’t have a full solution to share this is 
a good state to use. 

• [ needs_ack ] – You have some code ready to be looked at by others and it is posted 
publicly. 

• [ acked ] – Someone has looked at your idea and code and acknowledges it should be 
included in the proposed updates branch. 

• [ proposed ] – The update can be replaced by a better update, altered, backed out, etc… It 
is not expected to be stable at this point, but is provided so it can be tested and enhanced 
by the community. 

• [ candidate ] – The update seems like a good solution, is stable, and no-one seems to 
have reasonable objections to including it in the project. 

• [ resolved ] – The update is now included in the master branch and will be a part of the 
next tagged release. 

• [ hold ] & [ invalid ] – have their general meanings and will be commented when the state 
is changed. 

Branch flow and meaning 

topic → pu → next → master 

• [ topic ] – A branch off of the master branch that has your new-feature on it that you want 
reviewed. 

Comment [JL1]: I would not mention 

that it “looks bad”. IMO, that put the 

reader in the wrong state of mind. Also, 

“super easy” sounds high school-ish. I’d go 

for something more formal in the lines of: 

“Don’t be daunted by the process. Once 

you get a basic understanding [...] the  

workflow will make sense”. 

Formatted: Font: Not Bold

Formatted: Font: Italic

Comment [JL2]: Links? 

Formatted: Font: Italic

Formatted: Font: Italic

Comment [JL3]: You shift from 

addressing the reader (“You are working 

[...]”) to a neutral stating of facts (“The 

update can be replaced [...]”). I’d stick to 

one of the two. My personal preference 

goes to the neutral form. 

This is true of the document as a whole, 

btw. 

Comment [JL4]: I’d name them 

explicitly, and put  this whole sentence at 

the end of the section, after [hold] & 

[invalid] 

Comment [JL5]: I’d just say “Use this 

state to let others know that you are 

currently working on this ticket” 

Comment [JL6]: Looking at this 

workflow again and again, I think “acked” 

and proposed should be one and the same 

thing. 

Comment [JL7]: Hold and invalid are 

not thoroughly explained in this document. 

One thing I’d like mentioned is that it 

should be mandatory to explain why a 

ticket gets in this state, maybe with a 

substate (will not fixed, worked as 

designed, not a bug, etc...) an at least a few 

lines of info. Don keeps closing tickets on 

SF without any explanation, and this leads 

to frustration from the users. 

Comment [JL8]: Would here be the 

place to give the format of such a topic 

branch? i.e. jl/LH-22/wiggle_stuff_around ? 



• [ pu ] – The proposed update has been acknowledged as reasonable and needs testing and 
community feedback. 

• [ next ] – The update has tested OK and should be included in an upcoming release, but 
still needs more community feedback and usage. 

• [ master ] – The update will be a part of the next release and the issue is considered 
resolved. 

Note: 

Sometimes these steps can go very quickly and portions of the flow will be skipped because the 
update is obvious and trivial. This flow is not written in stone and is not meant to be followed 
pedantically. Rather it serves as an assurance thate we truly are thinking about quality. 

Flow Details. 

 

The ‘idea’ stage.  

Related ticket states: [ new ] [ open ] 

If you want to help but need some ideas visit: 

The IdeaTorrent. 
Our Freenode #Notepad++ channel. 
The plugin forums. 
The open forums. 

Here are some things to remember when creating your ticket: 

• You will need to be signed in to your Lighthouse account to create a ticket. 
• Please use an informative subject.  

o It should start with ‘[New Feature] featurename: description’ or ‘[Enhancement] 
enhanced area – descritpion’ or some such prefix. 

o Modified proposals then use ‘[New Feature v2] …..’ v3 and so on. This makes it 
very simple for everyone to interested to track what is going on. 

• Assign the ticket to yourself. 
• Don’t bother assigning the Milestone it will be figured out later. 
• Add some descriptive tags. 

All new features and enhancements need a ticket. 

 

The ‘acknowledgment’ stage.  

Comment [JL9]: YAY! :-D 

Comment [JL10]: The format of this 

section does not match the one from 

subsequent ones. It lacks an italicized 

subtitle (e.g.  Getting Acknowledgment 

below) and a short description of what is 

expected of the user at this point. 

Also, while the ticket creation is detailed, 

the ticket opening isn’t. 

Comment [JL11]: Shouldn’t LH serves 

as an IdeaTorrent for N++CR? 

Comment [JL12]: IMO, a link to “how 

to create a LH account” would be nice 

here. 

Comment [JL13]: I’d appreciate if we’d 

have the actual list of keywords that should 

be used here, including for bugs. 

Comment [JL14]: A simple “how to 

modify a proposal” paragraph would be 

nice. 

Comment [JL15]: I don’t think that’s 

always true. 

1- For bugs, they should just be assigned 

to npp-community. No? 

2-If we’re to use LH as an IdeaTorrent 

replacement, then a feature can be 

proposed but not own by the submitter. 

Comment [JL16]: I’d like to have clear 

set of tags for bugs, crashes, features, etc, 

so we can create ticket bins to easily track 

those. 



Releated ticket states: [ needs_ack ] [ acked ] 

Getting Acknowledgment.  

Git, Github and Lighthouse work together, so it is recommended to use them. How? After an 
initial setup you pusch a local branch to your Github forked account, the commit message is sent 
to Lighthouse. Lighthouse then looks at the commit and uses a small block of embedded text to 
populate a post to the ticket referenced. Your full commit message becomes your ticket post and 
the state of your ticket is updated. The patch is posted to the project timeline, an update is 
emailed to people watching the ticket, and also included in the ticket is a link to your commit on 
Github where comments can be made and your code reviewed line by line. 

Giving Acknowledgment 

When giving an acknowledgment an update is checked to ensure that it: 

• doesn’t break any existing tests. 
• is well written. 
• is limited to the issue being fixed. 
• actually fixes the issue. 

Acknowledgment of someone’s code is just a way of saying “It looks good to me, and sounds 
reasonable.”, it is not meant to be an intensive scrutiny. 

 

The ‘proposal’ stage.  

Related states: [ proposed ] 

Proposed Updates.  

Ticket with a state of ‘acked’ are merged into the main repositories pu branch and graduate to 
`proposed` where they get scrutinized in detail. Other developers in the community will make 
suggestions or offer their own changes and updates. 

While at this stage the update is checked to ensure that it: 

• includes tests to ensure the fix doesn’t break again in the future. 
• builds on each target platform in each of the configurations. 
• has any needed documentation. 

This step can go round and round sometimes. While getting an update into the project is 
important it is also important that it be maintainable in the future. Sometimes the person 
introduced a poor solution and does not follow through but the idea is a good one and it may be 
awhile before someone picks it up again. 

Comment [JL17]: You cover the “how 

to” with Github (which strangely does not 

seem mandatory, btw), but not the manual 

way (that would be needed if one does not 

use Github). Also, the condition specifying 

when to  switch to “needs_ack” are not 

covered (as they are for Giving 

Acknowledgement, below) 

Comment [JL18]: Too informal IMO. 

I’d use “Here’s how: “ instead. 

Comment [JL19]: Link? Do we have an 

“internal” document for this? 

Comment [JL20]: Repetition. “to 

Lighthouse, which then looks [...]” or “to 

lighthouse. It then looks [...]” 

Comment [JL21]: An update? This is 

not clear to me. Shouldn’t it be “the code 

in the branch” or something more precise? 

Comment [JL22]: While I totally agree, 

this is still very vague as we don’t have any 

style guideline. Maybe we should come up 

with certain rules in the future to help the 

reviewer (and the reviewed) come to 

consensus more rapidly. 

Comment [JL23]: This does not apply 

solely to bug fixes (as the sentence seems 

to imply), but to all submitted code. It 

should be clearer on that point. 

Comment [JL24]: “Required” instead 

of needed? 

Comment [JL25]: “Sometimes, a coder 

can introduce a poor solution”. “The” 

person isn’t introduced before in the 

section. 



 

The ‘integration’ stage.  

Related states: [ candidate ] [ resolved ] 

Candidacy. 

The tickets with a state of `proposed` graduate to `candidate` when the community agrees it is 
ready. 

When the proposed update looks to be ready, a milestone will be set for inclusion into a release 
and it will be merged into the next branch of our repository. 

The main purpose of this stage is to get wider community coverage of the proposed update 
before exposing all users to it. Possibly revealing hidden problems, or getting ideas from 
someone else on how to make it even better before releasing it. `Candidate` tickets will appear 
crossed off in the LighthouseApp ticket monitor but not counted as resolved since it can still be 
‘undone’ if a problem is found. 

When the proposed update reaches this stage you can be pretty assured it will work and not cause 
problems. Unless someone finds something wrong there is nothing left for you to do. 

Resolution.  

The tickets with a state of `candidate` stay on the next branch until it is time to merge with the 
master branch to meet their milestone. They are then `resolved`. 

By the time an update becomes a candidate the issues with it have been found and resolved, so 
there isn’t really much left to between that point and when it becomes resolved except to wait for 
the milestone and hope other developers and users are using it. Developers are encouraged to use 
the next branch for daily use to help make sure candidates are worthwhile. 

When the milestone is reached the update will be merged into the master branch and the ticket 
will be marked as resolved. The only thing left for anyone to do is use it and be happy. 

 

Comment [JL26]: Again here, the 

“you”is brought out of nowhere. 


